
Multimodal Reliability Assessment for

Complex Engineering Applications using

Efficient Global Optimization

B. J. Bichon††∗, M. S. Eldred∗∗†, L. P. Swiler∗∗‡, S. Mahadevan††§, and J. M. McFarland††¶

††Vanderbilt University, Nashville, TN 37235
∗∗Sandia National Laboratories‖, Albuquerque, NM 87185

As engineering applications become increasingly complex, they are often characterized
by implicit response functions that are both expensive to evaluate and nonlinear in their
behavior. Reliability assessment given this type of response is difficult with available meth-
ods. Current reliability methods focus on the discovery of a single most probable point
of failure, and then build a low-order approximation to the limit state at this point. This
creates inaccuracies when applied to engineering applications for which the limit state has
a higher degree of nonlinearity or is multimodal. Sampling methods, on the other hand,
do not rely on an approximation to the shape of the limit state and are therefore generally
more accurate when applied to problems with nonlinear limit states. However, sampling
methods typically require a large number of response function evaluations, which can make
their application infeasible for computationally expensive problems.

This paper describes the application of efficient global optimization to reliability as-
sessment to provide a method that efficiently characterizes the limit state throughout the
uncertain space. The method begins with a Gaussian process model built from a very small
number of samples, and then intelligently chooses where to generate subsequent samples
to ensure the model is accurate in the vicinity of the limit state. The resulting Gaussian
process model is then sampled using multimodal adaptive importance sampling to calculate
the probability of exceeding (or failing to exceed) the response level of interest.

By locating multiple points on or near the limit state, more complex limit states can be
modeled, leading to more accurate probability integration. By concentrating the samples
in the area where accuracy is important (i.e. in the vicinity of the limit state), only a small
number of true function evaluations are required to build a quality surrogate model. The
resulting method is both accurate for any arbitrarily shaped limit state and computationally
efficient even for expensive response functions.

This new method is applied to a collection of example problems that currently available
methods have difficulty solving either accurately or efficiently. The focus is on forward
reliability analysis (calculating the probability of exceeding a specified response level), but
some discussion of application to inverse reliability analysis (calculating the response level
that corresponds to a specified probability) is included.
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I. Introduction

Accurate reliability assessment is a problem of great importance to the engineering community. Poor
solutions lead to designs that are either unreliable or overly conservative. However, the ability to accurately
quantify the uncertainty in a design becomes increasingly difficult as the analysis of the design becomes more
expensive and its behavior more nonlinear.

Current methods of reliability assessment solve a local optimization problem to locate the most probable
point of failure (MPP), and then quantify the reliability based on its location and an approximation to the
shape of the limit state at this point. Typically, gradient-based solvers are used to solve this optimization
problem, which may fail to converge for nonsmooth response functions with unreliable gradients or may
converge to only one of several solutions for response functions that possess multiple local optima. In
addition to these MPP convergence issues, the evaluated probabilites can be adversely affected by limit state
approximations that may be inaccurate. Engineers are then forced to revert to sampling methods, which do
not rely on MPP convergence or simplifying approximations to the true shape of the limit state. However,
employing such methods is impractical when evaluation of the response function is expensive.

A reliability assessment method that is both efficient when applied to expensive response functions and
accurate for a response function of any arbitrary shape is needed. This paper investigates the application of
efficient global optimization15 (EGO) to the search for multiple points on or near the limit state throughout
the uncertain variable space. By locating multiple points on the limit state, more complex limit states
can be accurately modeled, resulting in a more accurate assessment of the reliability. It should be empha-
sized here that these multiple points exist on a single limit state. This is significantly different (and more
computationally demanding) than problems concerned with locating single MPPs on multiple limit states.

EGO was developed to facilitate the unconstrained minimization of expensive implicit response func-
tions. The method builds an initial Gaussian process model as a global surrogate for the response function,
then intelligently selects additional samples to be added for inclusion in a new Gaussian process model in
subsequent iterations. The new samples are selected based on how much they are expected to improve the
current best solution to the optimization problem. When this expected improvement is acceptably small,
the globally optimal solution has been found. The application of this methodology to equality-constrained
reliability assessment is the primary contribution of this work.

Section II describes the reliability assessment problem and traditional methods of solving it. Section III
gives an overview of EGO, and outlines how it is adapted for application to reliability assessment. Section IV
describes a collection of example problems and compares the performance of this EGO-based method to that
of other available methods. Finally, Section V provides concluding remarks on the promise and shortcomings
of this new method.

II. Reliability Assessment

The goal of reliability assessment is to determine the probability that an engineered device, component,
system, etc. will fail in service given that its behavior is dependent on random inputs. This behavior is
defined by a response function g(x), where x represents the vector of random variables defined by known
probability distributions. Failure is then defined by that response function exceeding (or failing to exceed)
some threshold value z̄. The probability of failure, pf , is then defined by

pf =
∫
· · ·

∫
g > z̄

fx(x) dx (1)

where fx is the joint probability density function of the random variables x, and the integration is performed
over the failure region where g > z̄. In general, fx is impossible to obtain, and even when it is available,
evaluating the multiple integral is impractical.10 Because of these complications, methods of approximating
this integral are used in practice.

A. MPP Search Methods

These methods involve solving a nonlinear optimization problem to locate the point on the limit state (the
contour on the response function where g= z̄) that has the greatest probability of occurring. This point is
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known as the most probable point or MPP. An approximation to the limit state is then formed at this point
to facilitate the integration required to compute the probability of failure.

The MPP search is performed in uncorrelated standard normal space because it simplifies the probability
integration; in this space, the distance from the origin to the MPP is equivalent to the number of input
standard deviations from the mean response at which the limit state lies. This distance is known as the
reliability index and is denoted by β. The transformation from correlated non-normal distributions (x-space)
to uncorrelated standard normal distributions (u-space) is nonlinear in general, and possible approaches
include the Rosenblatt,19 Nataf,5 and Box-Cox1 transformations. The nonlinear transformations may also
be linearized, and common approaches for this include the Rackwitz-Fiessler17 two-parameter equivalent
normal and the Chen-Lind3 and Wu-Wirsching23 three-parameter equivalent normals. This work employs
the Nataf nonlinear transformation, which occurs in the following two steps. To transform between the
original correlated x-space variables and correlated standard normals (z-space), the CDF matching condition
is used:

Φ(zi) = F (xi) (2)

where F () is the cumulative distribution function of the original probability distribution and Φ() is the
standard normal cumulative distribution function. Then, to transform between correlated z-space variables
and uncorrelated u-space variables, the Cholesky factor L of a modified correlation matrix is used:

z = Lu (3)

where the original correlation matrix for non-normals in x-space has been modified for z-space.5

The forward reliability analysis algorithm for computing the probability/reliability level that corresponds
to a specified response level is called the reliability index approach (RIA), and the inverse reliability analysis
algorithm for computing the response level that corresponds to a specified probability/reliability level is
called the performance measure approach (PMA).21 The differences between the RIA and PMA formulations
appear in the objective function and equality constraint formulations in the MPP searches. For RIA, the
MPP search for achieving the specified response level z̄ is formulated as

minimize uT u

subject to G(u) = z̄ (4)

and for PMA, the MPP search for achieving the specified probability/reliability level pf , β̄ is formulated as

minimize ±G(u)
subject to uT u = β̄2 (5)

where u is a vector centered at the origin in u-space and G(u) ≡ g(x) by definition. In the RIA case, the
optimal MPP solution u∗ defines the reliability index from β = ±‖u∗‖2, which in turn defines the probability
of failure through the probability integration. In the PMA case, the value of the response function at the
optimal MPP solution G(u∗) defines the desired response level result.

Recent research has focused on the use of local and multipoint surrogate models to reduce the expense
of the MPP search.7,8 All of these MPP search methods employ local optimization techniques and converge
to a single MPP. But the limit state of a complex engineering application may be multimodal and possess
multiple significantly probable points of failure. The method for reliability assessment proposed here uses a
global surrogate model and global optimization methods to reduce expense and locate multiple points along
the limit state.

B. Probability Integration

For an RIA formulation, after the MPP is found and the reliability index β is known, the next step is to
integrate over the failure region to calculate the probability of failure. This can be greatly simplified from
Eqn. 1 by approximating the shape of the limit state with one over which it is easier to integrate. The
simplest approximation is the first-order reliability method (FORM), which approximates the limit state as
a linear function. Because β represents the distance from the mean response to the MPP in standard normal
space, the probability integration simplifies to:

pf = Φ(−β) (6)
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Another alternative is the second-order reliability method (SORM), which incorporates some curvature in
the limit state approximation.2,12,13 Breitung applies a correction based on asymptotic analysis:2

pf = Φ(−β)
n−1∏
i=1

1√
1 + βκi

(7)

where κi are the principal curvatures of the limit state (the eigenvalues of an orthonormal transformation
of ∇2

uG, taken positive for a convex limit state). This method essentially uses a parabolic approximation
to the limit state and is more accurate for large values of β because it collapses to first-order integration at
β = 0. An alternative correction in Ref. 12 is consistent with Breitung’s correction in the asymptotic regime
(β →∞) but does not approach first-order integration as β → 0:

pf = Φ(−β)
n−1∏
i=1

1√
1 + ψ(−β)κi

(8)

where ψ() = φ()
Φ() and φ() is the standard normal density function. Ref. 13 applies further corrections to Eqn. 8

based on point concentration methods. Each of these methods makes a local approximation to the shape of
the limit state, centered at the point of highest probability, making them inaccurate if the approximation is
poor. In today’s complex engineering models, the true shape of the limit state is not likely to be linear or
parabolic, so more advanced methods are needed.

This nonlinearity causes a problem for the PMA formulation described in Eq. 5. For a linear approxima-
tion to the limit state, the relationship between the probability and the reliability index is easily invertible by
β̄ = −Φ−1(pf ), which means that constraining the MPP to be a specific distance β̄ from the mean is equiv-
alent to specifying the probability at the MPP. Ref. 7 has shown that a similar relationship can be derived
for second-order approximations to the limit state. However, for more complex limit states that cannot be
accurately modeled with these low-order functions, there is no β → pf relationship, much less one that can
be inverted to provide a constraint for the optimization. For multimodal functions, there are multiple MPP
solutions with different βs and the inverse formulation of constraining to a single β loses meaning. For this
reason, PMA is not an effective formulation for inverse reliability assessment of multimodal functions. Due
to this lack of a proper formulation for the inverse problem, this paper focuses on direct reliability analysis.

C. Sampling Methods

An alternative to MPP search methods is to directly perform the probability integration numerically by
sampling the response function. Sampling methods do not rely on a simplifying approximation to the shape
of the limit state, so they can be more accurate than FORM and SORM, but they can also be prohibitively
expensive because they generally require a large number of response function evaluations. Importance
sampling methods reduce this expense by focusing the samples in the important regions of the uncertain
space. They do this by centering the sampling density function at the MPP rather than at the mean. This
ensures the samples will lie in an interesting region of the space, thus increasing the efficiency of the sampling
method. Adaptive importance sampling (AIS) further improves the efficiency by adaptively updating the
sampling density function. Multimodal adaptive importance sampling6,24 is a variation of AIS that allows
for the use of multiple sampling densities making it better suited for cases where multiple sections of the
limit state are highly probable.

Note that importance sampling methods require the location of at least one MPP be known because it
is used to center the initial sampling density. However, current gradient-based, local search methods used
in MPP search may fail to converge or may converge to poor solutions, possibly making these methods
inapplicable. As the next section describes, EGO is a global optimization method that does not depend on
the availability of accurate gradient information, making convergence more reliable for nonsmooth response
functions. Moreover, EGO has the ability to locate multiple failure points, which would provide multiple
starting points and a true multimodal sampling density for the initial steps of multimodal AIS. An additional
advantage of the EGO-based method proposed is that a byproduct of the search for failure points is a Gaussian
process model that is accurate in the vicinity of the limit state, thereby providing an inexpensive surrogate
that can be used to provide response function samples. As will be seen, using EGO to locate multiple points
along the limit state, and then using the resulting Gaussian process model to provide function evaluations
in multimodal AIS for the probability integration, results in an accurate and efficient reliability assessment
tool.
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III. Efficient Global Optimization

Efficient global optimization was originally proposed by Jones et al.15 and has been adapted into similar
methods such as sequential kriging optimization (SKO).14 The main difference between SKO and EGO lies
within the specific formulation of what is known as the expected improvement function (EIF), which is the
feature that sets all EGO/SKO-type methods apart from other global optimization methods. The EIF is
used to select the location at which a new training point should be added to the Gaussian process model
by maximizing the amount of improvement in the objective function that can be expected by adding that
point. A point could be expected to produce an improvement in the objective function if its predicted value
is better than the current best solution, or if the uncertainty in its prediction is such that the probability
of it producing a better solution is high. Because the uncertainty is higher in regions of the design space
with few observations, this provides a balance between exploiting areas of the design space that predict good
solutions, and exploring areas where more information is needed. The general procedure of these EGO-type
methods is:

1. Build an initial Gaussian process model of the objective function

2. Find the point that maximizes the EIF. If the EIF value at this point is sufficiently small, stop.

3. Evaluate the objective function at the point where the EIF is maximized. Update the Gaussian process
model using this new point. Go to Step 2.

To construct a parallel algorithm, the n best points could be selected and evaluated in steps 2 and 3. The
following sections discuss the construction of the Gaussian process model used, the form of the EIF, and
then some ideas on how that EIF could be altered for application to MPP search.

A. Gaussian Process Model

Gaussian process (GP) models are set apart from other surrogate models because they provide not just
a predicted value at an unsampled point, but a full Gaussian distribution with an expected value and a
predicted variance. This variance gives an indication of the uncertainty in the model, which results from the
construction of the covariance function. This function is based on the idea that when input points are near
one another, the correlation between their corresponding outputs will be high. As a result, the uncertainty
associated with the model’s predictions will be small for input points which are near the points used to train
the model, and will increase as one moves further from the training points.

It is assumed that the true response function being modeled G(u) can be described by:4

G(u) = h(u)T β + Z(u) (9)

where h() is the trend of the model, β is the vector of trend coefficients, and Z() is a stationary Gaussian
process with zero mean (and covariance defined below) that describes the departure of the model from its
underlying trend. The trend of the model can be assumed to be any function, but taking it to be a constant
value is generally sufficient.20 The covariance between outputs of the Gaussian process Z() at points a and
b is defined as:

Cov [Z(a), Z(b)] = σ2
ZR(a,b) (10)

where σ2
Z is the process variance and R() is the correlation function. There are several options for the

correlation function, but the squared-exponential function is common, and is used here for R():

R(a,b) = exp

[
−

d∑
i=1

θi(ai − bi)2
]

(11)

where d represents the dimensionality of the problem, and θi is a scale parameter that indicates the correlation
between the points within dimension i. A large θi indicates a low correlation.

The expected value µG() and variance σ2
G() of the GP model prediction at point u are:

µG(u) = h(u)T β + r(u)T R−1(g − Fβ) (12)

σ2
G(u) = σ2

Z −
[
h(u)T r(u)T

] [
0 FT

F R

]−1 [
h(u)
r(u)

]
(13)
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where r(u) is a vector containing the covariance between u and each of the n training points (defined by
Eq. 10), R is an n×n matrix containing the correlation between each pair of training points, g is the vector
of response outputs at each of the training points, and F is an n × q matrix with rows h(ui)T (the trend
function for training point i containing q terms; for a constant trend q = 1). This form of the variance
accounts for the uncertainty in the trend coefficients β, but assumes that the parameters governing the
covariance function (σ2

Z and θ) have known values.
The parameters β, σ2

Z and θ are determined through maximum likelihood estimation. This involves
taking the log of the probability of observing the response values g given the covariance matrix R, which
can be written as:20

log [p(g|R)] = − 1
n

log|R| − log(σ̂2
Z) (14)

where |R| indicates the determinant of R, and σ̂2
Z is the optimal value of the variance given θ and is defined

by:

σ̂2
Z =

1
n

(g − Fβ̂)T R−1(g − Fβ̂) (15)

where β̂ is the generalized least squares estimate of β from:

β̂ =
[
FT R−1F

]−1
FT R−1g (16)

Maximizing Eq. 14 gives the maximum likelihood estimate of θ.

B. Expected Improvement Function

The expected improvement function is used to select the location at which a new training point should be
added. It does this by calculating the expectation that any point in the search space will provide a better
solution than the current best solution based on the expected values and variances predicted by the GP
model. An important feature of the EIF is that it provides a balance between exploiting areas of the design
space where good solutions have been found, and exploring areas of the design space where the uncertainty is
high. First, recognize that at any point in the design space, the GP prediction Ĝ() is a Gaussian distribution:

Ĝ(u) ∼ N [µG(u), σG(u)] (17)

where the mean µG() and the variance σ2
G() were defined in Eqs. 12 and 13, respectively. The EIF is defined

as:14,15

EI
(
Ĝ(u)

)
≡ E

[
max

(
G(u∗)− Ĝ(u), 0

)]
(18)

where G(u∗) is the current best solution chosen from among the true function values at the training points
(henceforth referred to as simply G∗). This expectation can then be computed by integrating over the
distribution Ĝ(u) with G∗ held constant:

EI
(
Ĝ(u)

)
=

∫ G∗

−∞
(G∗ −G) Ĝ(u) dG (19)

where G is a realization of Ĝ. This integral can be expressed analytically as:14,15

EI
(
Ĝ(u)

)
= (G∗ − µG) Φ

(
G∗ − µG

σG

)
+ σG φ

(
G∗ − µG

σG

)
(20)

where it is understood that µG and σG are functions of u.
The point at which the EIF is maximized is selected as an additional training point. With the new

training point added, a new GP model is built and then used to construct another EIF, which is then used
to choose another new training point, and so on, until the value of the EIF at its maximized point is below
some specified tolerance. In Ref. 14 this maximization is performed using a Nelder-Mead simplex approach,
which is a local optimization method. Because the EIF is often highly multimodal15 (particularly in the
early stages of the process) it is expected that Nelder-Mead may fail to converge to the true global optimum.
In Ref. 15 a branch-and-bound technique for maximizing the EIF is used, but was found to often be too
expensive to run to convergence.
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It is important to understand how the use of this EIF leads to optimal solutions. Eq. 20 indicates how
much the objective function value at x is expected to be less than the predicted value at the current best
solution. It contains a balance between exploiting regions of the design space where good solutions have been
discovered, and exploring regions that have not been well sampled and thus have greater uncertainty. Because
the GP model provides a Gaussian distribution at each predicted point, expectations can be calculated.
Points with good expected values and even a small variance will have a significant expectation of producing
a better solution (exploitation), but so will points that have relatively poor expected values and greater
variance (exploration).

The application of EGO to reliability assessment, however, is made more complicated due to its inclusion
of equality constraints (see Eqs. 4-5). For inverse reliability analysis, this extra complication is small.
The response being modeled by the GP is the objective function of the optimization problem (see Eq. 5)
and the deterministic constraint might be handled through the use of a merit function, thereby allowing
EGO to solve this equality-constrained optimization problem. Here the problem lies in the interpretation
of the constraint for multimodal problems as mentioned previously. In the forward reliability case, the
response function appears in the constraint rather than the objective. Here, the maximization of the EIF is
inappropriate because feasibility is the main concern. This application is therefore a significant departure
from the intentions of EGO and requires a new formulation. For this problem, the expected feasibility
function is introduced.

C. Expected Feasibility Function

The expected improvement function provides an indication of how much the true value of the response at
a point can be expected to be less than the current best solution. It therefore makes little sense to apply
this to the forward reliability problem where the goal is not to minimize the response, but rather to find
where it is equal to a specified threshold value. The expected feasibility function (EFF) is introduced here to
provide an indication of how well the true value of the response is expected to satisfy the equality constraint
G(u)= z̄. Inspired by the contour estimation work in Ref. 18, this expectation can be calculated in a similar
fashion as Eq. 19 by integrating over a region in the immediate vicinity of the threshold value z̄ ± ε:

EF
(
Ĝ(u)

)
=

∫ z+ε

z−ε

[
ε− |z̄ −G|

]
Ĝ(u) dG (21)

where G denotes a realization of the distribution Ĝ, as before. Allowing z+ and z− to denote z̄ ± ε,
respectively, this integral can be expressed analytically as:

EF
(
Ĝ(u)

)
= (µG − z̄)

[
2 Φ

(
z̄ − µG

σG

)
− Φ

(
z− − µG

σG

)
− Φ

(
z+ − µG

σG

)]
− σG

[
2φ

(
z̄ − µG

σG

)
− φ

(
z− − µG

σG

)
− φ

(
z+ − µG

σG

)]
+ ε

[
Φ

(
z+ − µG

σG

)
− Φ

(
z− − µG

σG

)]
(22)

where ε is a constant proportional to the standard deviation of the GP predictor (ε ∝ σG). In this case, z−,
z+, µG, σG, and ε are all functions of the location u, while z̄ is a constant. Note that the EFF provides
the same balance between exploration and exploitation as is captured in the EIF. Points where the expected
value is close to the threshold (µG≈ z̄) and points with a large uncertainty in the prediction will have large
expected feasibility values.

IV. Computational Experiments

This new reliability assessment method has been applied to a collection of example problems to compare
it to other available methods. The following process was used:

1. Generate a small number of samples from the true response function.

(a) Only (n+1)(n+2)
2 samples are used (n is the number of uncertain variables). This initial selection

is arbitrary, but the number of samples required to define a quadratic polynomial is used as a
convenient rule of thumb.

7 of 12

American Institute of Aeronautics and Astronautics



(b) The samples uniformly span the uncertain space over the bounds ±5σ.

(c) Latin hypercube sampling (LHS) is used to generate the samples.

2. Construct an initial Gaussian process model from these samples.

3. Find the point with maximum expected feasibility.

(a) The expected feasibility function is built with ε = 2σG.

(b) To ensure the global optimum of this multimodal function is found, either a genetic algorithm or
DIRECT is used.

(c) If the maximum expected feasibility is acceptably small, go to step 6.

4. Evaluate the true response function at this point.

5. Add this new sample to the previous set and build a new GP model. Go to step 3.

6. When the maximum expected feasibility is small, the Gaussian process model is accurate in the vicinity
of the limit state. This surrogate is then used to calculate the probability using multimodal adaptive
importance sampling.

Computational results for all methods are from either published results or new analyses performed using
the DAKOTA/UQ22 software with solvers provided by the Coliny11 and OPT++16 packages. DAKOTA/UQ
is the uncertainty quantification component of DAKOTA,9 an open-source software framework for design and
performance analysis of computational models on high performance computers developed at Sandia National
Laboratories.

A. Multimodal Example

The first problem has a highly nonlinear response defined by:

g (x) =

(
x2

1 + 4
)
(x2 − 1)

20
− sin

5x1

2
− 2 (23)

The distribution of x1 is Normal(1.5, 1) and x2 is Normal(2.5, 1); the variables are uncorrelated. The
response level of interest for this study is z̄ = 0 with failure defined by g > z̄. Figure 1 shows a plot in
x-space of the limit state throughout the ±5 standard deviation search space. This problem has several local
optima to the forward-reliability MPP search problem (see Eq. 4) and the two most significant MPPs are
shown on the plot.

This problem was solved using reliability methods available in DAKOTA/UQ that reduce the cost of the
MPP search through the use of local surrogate models. Two response function approximation methods were
investigated:7 second-order iterated Advanced Mean Value (AMV2+) and Two-point Adaptive Nonlinear
Approximation (TANA).

A case using no response function approximation was also investigated. To produce results consistent
with an implicit response function, numerical gradients and quasi-Newton Hessians from Symmetric Rank 1
updates were used. For each method, at the converged MPP, both first-order and second-order integration
(using Eqs. 6 and 8) were used to calculate the probability.

For each method, the only algorithmic variation explored here is that the surrogate models can be built
in either x-space or u-space. Determining which space is appropriate depends upon the form of the response
and the space transformation. This choice can have significant effects on both accuracy and efficiency for
methods that use low-order approximations to the response function. For instance, if a linear approximation
is used for a response that is linear in x-space but nonlinear in u-space, then building the approximation in
x-space will yield better results. Gaussian process models are not greatly affected by this choice because they
do not rely on curve-fitting or any assumptions on the shape of the response. However, they can smooth
out finer details in the true function, meaning they will generally provide better approximations with fewer
samples if the response is well behaved. If it is known that the response function is smoother in one space
than the other, the user should take advantage of that information and build the GP in that space.

Table 1 gives a summary of the results from all methods. To establish an accurate estimate of the true
solution, 20 independent studies were performed using one million Latin hypercube samples per study. The
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Figure 1. Limit state of the multimodal test problem.

average probability from these studies is reported as the ”true” solution. Because the EGO-based method
is stochastic, it was also run 20 times and the average probability are reported. To measure the accuracy
of the methods, two errors are reported for the EGO results: the error in the average probability, and the
average of the absolute errors from the 20 studies. For comparison, the same errors are given for the 20 LHS
studies.

Table 1. Results for the multimodal test problem.

Reliability Function First-Order pf Second-Order pf Sampling pf

Method Evaluations (% Error) (% Error) (% Error, Avg. Error)
No Approximation 66 0.11798 (276.3%) 0.02516 (-19.7%) —
x-space AMV2+ 26 0.11798 (276.3%) 0.02516 (-19.7%) —
u-space AMV2+ 26 0.11798 (276.3%) 0.02516 (-19.7%) —
x-space TANA 506 0.08642 (175.7%) 0.08716 (178.0%) —
u-space TANA 131 0.11798 (276.3%) 0.02516 (-19.7%) —
x-space EGO 50.4 — — 0.03127 (0.233%, 0.929%)
u-space EGO 49.4 — — 0.03136 (0.033%, 0.787%)
True LHS solution 1M — — 0.03135 (0.000%, 0.328%)

Most of the MPP search methods converge to the same MPP and thus report the same probability.
These probabilities are more accurate when second-order integration is used, but still have significant errors.
However, x-space TANA converges to the second MPP shown in Fig. 1, which lies in a relatively flat region
of the limit state. This local lack of curvature means that first-order and second-order integration produce
approximately the same probability. In isolation, this second-order result could be viewed as a verification
of the first-order probability and thus provide a misguided confidence in the reliability analysis. For this
multimodal problem, the new EGO-based method is more expensive than AMV2+, but cheaper than all the
other methods, and provides much more accurate results.
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B. Nonlinear Example

The second example is a two-dimensional nonlinear function taken from the literature.

g (x) = x3
1 + x3

2 − 18 (24)

The distribution of x1 is Normal(10, 5) and x2 is Normal(9.9, 5); the variables are uncorrelated. The response
level of interest for this study is z̄ = 0 with failure defined by g < z̄. This problem was introduced by Zou
et al.24 to test a method that used a trust-region managed surrogate model to locate the MPP and then
multimodal adaptive importance sampling (MAIS) to perform the probability integration.

Table 2 gives a summary of the results from the same methods investigated in the previous example plus
the published results from Ref. 24. To establish an accurate estimate of the true solution, 20 independent
studies were performed using one million Latin hypercube samples per study. The average probability from
these studies is reported as the ”true” solution. Again, two errors are reported for the EGO-based methods
and LHS: the error in the average probability, and the average of the absolute errors from the 20 studies.

Table 2. Results for the nonlinear test problem.

Reliability Function First-Order pf Second-Order pf Sampling pf

Method Evaluations (% Error) (% Error) (% Error, Avg. Error)
No Approximation 125 0.01301 (128.2%) 0.004164 (-26.9%) —
x-space AMV2+ 66 0.01301 (128.2%) 0.004165 (-26.9%) —
u-space AMV2+ 66 0.01301 (128.2%) 0.004165 (-26.9%) —
x-space TANA 21 0.01301 (128.2%) 0.004155 (-27.1%) —
u-space TANA 36 0.01301 (128.2%) 0.004165 (-26.9%) —
Zou et al. MAIS 560 — — 0.005750 (0.883%, no data)
x-space EGO 40.6 — — 0.005750 (0.837%, 2.740%)
u-space EGO 43.1 — — 0.005652 (0.876%, 3.523%)
True LHS solution 1M — — 0.005700 (0.000%, 0.930%)

This problem only has one significant MPP, so all of the local search methods converge to approximately
the same point (x-space TANA preconverges to a slightly sub-optimal MPP). Once again, second-order
integration provides better results, but is still not an accurate approximation to the true shape of the limit
state, so there are still large errors. Because this test problem is not multimodal, performing MAIS with
only the MPP as a starting point is sufficient to capture the higher level of nonlinearity in the limit state
and generate an excellent result. If this method had been applied to the previous test problem, it would
have either been much less accurate or would require a substantial increase in cost in order to adequately
locate and sample the other significantly probable regions of the space. It should also be pointed out that
despite MAIS being a stochastic method, only the error for a single result is reported by Zou et al. and not
an average absolute error as is included for the other sampling methods. For this nonlinear problem, the new
EGO-based method is more expensive than TANA, but cheaper than all the other methods, and provides
much more accurate results.

V. Conclusions

As engineering applications become increasingly complex, they are often characterized by implicit re-
sponse functions that are both expensive to evaluate and nonlinear in their behavior. Current reliability
methods are not adequate for these problems because they require engineers to sacrifice either accuracy
or efficiency. This paper has presented a new method based on efficient global optimization that is aimed
at creating a method that is both accurate for any arbitrarily shaped limit state and efficient even for
computationally expensive response functions.

The example problems used to test this new method have shown that it can produce results that are far
more accurate than MPP search methods, while requiring far fewer true function evaluations than sampling
methods. However, the authors realize that these problems are too simple to make any definitive judgment on
the performance of the new method because both problems involve only two uncorrelated normal variables.
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Investigation is ongoing to determine if this EGO-based method will scale to problems with larger dimensions
and non-normal distributions.

An existing limitation to this new reliability assessment method is that it has no knowledge that points
far from the mean are less probable than ones near the mean. Because of this limitation, the method may
waste function evaluations in an attempt to improve the accuracty of the GP model in a region of the space
where additional accuracy is not important due to its low probability. Current research is investigating
a way to bias the maximization of the expected feasibility function towards regions of the space that are
more probable. Other additional work includes developing the parallel method alluded to at the beginning of
Section III and investigating how this new reliability assessment method might be utilized in reliability-based
design optimization.
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